Persistence

You can use the dsl library to define your mappings and a basic persistent layer for your application.

Mappings

If you wish to create mappings manually you can use the Mapping class, for more advanced use cases, however, we recommend you use the DocType abstraction in combination with Index (or IndexTemplate) to define index-level settings and properties. The mapping definition follows a similar pattern to the query dsl:

from elasticsearch_dsl import Keyword, Mapping, Nested, Text

# name your type
m = Mapping('my-type')

# add fields
m.field('title', 'text')

# you can use multi-fields easily
m.field('category', 'text', fields={'raw': Keyword()})

# you can also create a field manually
comment = Nested(
                 properties={
                    'author': Text(),
                    'created_at': Date()
                 })

# and attach it to the mapping
m.field('comments', comment)

# you can also define mappings for the meta fields
m.meta('_all', enabled=False)

# save the mapping into index 'my-index'
m.save('my-index')

Note

By default all fields (with the exception of Nested) will expect single values. You can always override this expectation during the field creation/definition by passing in multi=True into the constructor (m.field('tags', Keyword(multi=True))). Then the value of the field, even if the field hasn’t been set, will be an empty list enabling you to write doc.tags.append('search').

Especially if you are using dynamic mappings it might be useful to update the mapping based on an existing type in Elasticsearch, or create the mapping directly from an existing type:

# get the mapping from our production cluster
m = Mapping.from_es('my-index', 'my-type', using='prod')

# update based on data in QA cluster
m.update_from_es('my-index', using='qa')

# update the mapping on production
m.save('my-index', using='prod')

Common field options:

multi
If set to True the field’s value will be set to [] at first access.
required
Indicates if a field requires a value for the document to be valid.

Analysis

To specify analyzer values for Text fields you can just use the name of the analyzer (as a string) and either rely on the analyzer being defined (like built-in analyzers) or define the analyzer yourself manually.

Alternatively you can create your own analyzer and have the persistence layer handle its creation:

from elasticsearch_dsl import analyzer, tokenizer

my_analyzer = analyzer('my_analyzer',
    tokenizer=tokenizer('trigram', 'nGram', min_gram=3, max_gram=3),
    filter=['lowercase']
)

Each analysis object needs to have a name (my_analyzer and trigram in our example) and tokenizers, token filters and char filters also need to specify type (nGram in our example).

Note

When creating a mapping which relies on a custom analyzer the index must either not exist or be closed. To create multiple DocType-defined mappings you can use the Index object.

DocType

If you want to create a model-like wrapper around your documents, use the DocType class:

from datetime import datetime
from elasticsearch_dsl import DocType, Date, Nested, Boolean, \
    analyzer, InnerDoc, Completion, Keyword, Text

html_strip = analyzer('html_strip',
    tokenizer="standard",
    filter=["standard", "lowercase", "stop", "snowball"],
    char_filter=["html_strip"]
)

class Comment(InnerDoc):
    author = Text(fields={'raw': Keyword()})
    content = Text(analyzer='snowball')
    created_at = Date()

    def age(self):
        return datetime.now() - self.created_at

class Post(DocType):
    title = Text()
    title_suggest = Completion()
    created_at = Date()
    published = Boolean()
    category = Text(
        analyzer=html_strip,
        fields={'raw': Keyword()}
    )

    comments = Nested(Comment)

    class Meta:
        index = 'blog'

    def add_comment(self, author, content):
        self.comments.append(
          Comment(author=author, content=content, created_at=datetime.now()))

    def save(self, ** kwargs):
        self.created_at = datetime.now()
        return super().save(** kwargs)

Note on dates

elasticsearch-dsl will always respect the timezone information (or lack thereof) on the datetime objects passed in or stored in Elasticsearch. Elasticsearch itself interprets all datetimes with no timezone information as UTC. If you wish to reflect this in your python code, you can specify default_timezone when instantiating a Date field:

class Post(DocType):
    created_at = Date(default_timezone='UTC')

In that case any datetime object passed in (or parsed from elasticsearch) will be treated as if it were in UTC timezone.

Document life cycle

Before you first use the Post document type, you need to create the mappings in Elasticsearch. For that you can either use the Index object or create the mappings directly by calling the init class method:

# create the mappings in Elasticsearch
Post.init()

To create a new Post document just instantiate the class and pass in any fields you wish to set, you can then use standard attribute setting to change/add more fields. Note that you are not limited to the fields defined explicitly:

# instantiate the document
first = Post(title='My First Blog Post, yay!', published=True)
# assign some field values, can be values or lists of values
first.category = ['everything', 'nothing']
# every document has an id in meta
first.meta.id = 47


# save the document into the cluster
first.save()

All the metadata fields (id, routing, index etc) can be accessed (and set) via a meta attribute or directly using the underscored variant:

post = Post(meta={'id': 42})

# prints 42, same as post._id
print(post.meta.id)

# override default index, same as post._index
post.meta.index = 'my-blog'

Note

Having all metadata accessible through meta means that this name is reserved and you shouldn’t have a field called meta on your document. If you, however, need it you can still access the data using the get item (as opposed to attribute) syntax: post['meta'].

To retrieve an existing document use the get class method:

# retrieve the document
first = Post.get(id=42)
# now we can call methods, change fields, ...
first.add_comment('me', 'This is nice!')
# and save the changes into the cluster again
first.save()

# you can also update just individual fields which will call the update API
# and also update the document in place
first.update(published=True, published_by='me')

If the document is not found in elasticsearch an exception (elasticsearch.NotFoundError) will be raised. If you wish to return None instead just pass in ignore=404 to suppress the exception:

p = Post.get(id='not-in-es', ignore=404)
p is None

When you wish to retrive multiple documents at the same time by their id you can use the mget method:

posts = Post.mget([42, 47, 256])

mget will, by default, raise a NotFoundError if any of the documents wasn’t found and RequestError if any of the document had resulted in error. You can control this behavior by setting parameters:

raise_on_error
If True (default) then any error will cause an exception to be raised. Otherwise all documents containing errors will be treated as missing.
missing
Can have three possible values: 'none' (default), 'raise' and 'skip'. If a document is missing or errored it will either be replaced with None, an exception will be raised or the document will be skipped in the output list entirely.

All the information about the DocType, including its Mapping can be accessed through the _doc_type attribute of the class:

# name of the index in elasticsearch
Post._doc_type.index

# the raw Mapping object
Post._doc_type.mapping

The _doc_type attribute is also home to the refresh method which will update the mapping on the DocType from elasticsearch. This is very useful if you use dynamic mappings and want the class to be aware of those fields (for example if you wish the Date fields to be properly (de)serialized):

Post._doc_type.refresh()

To delete a document just call its delete method:

first = Post.get(id=42)
first.delete()

class Meta options

In the Meta class inside your document definition you can define various metadata for your document:

doc_type
name of the doc_type in elasticsearch. By default it will be set to doc, it is not recommended to change.
index
default index for the document, by default it is empty and every operation such as get or save requires an explicit index parameter
using
default connection alias to use, defaults to 'default'
mapping
optional instance of Mapping class to use as base for the mappings created from the fields on the document class itself.
matches(self, hit)
method that returns True if a given raw hit (dict returned from elasticsearch) should be deserialized using this DocType subclass. Can be overriden, by default will just check that values for _index (including any wildcard expansions) and _type in the document matches those in _doc_type.

Any attributes on the Meta class that are instance of MetaField will be used to control the mapping of the meta fields (_all, dynamic etc). Just name the parameter (without the leading underscore) as the field you wish to map and pass any parameters to the MetaField class:

class Post(DocType):
    title = Text()

    class Meta:
        all = MetaField(enabled=False)
        dynamic = MetaField('strict')

Index

Index is a class responsible for holding all the metadata related to an index in elasticsearch - mappings and settings. It is most useful when defining your mappings since it allows for easy creation of multiple mappings at the same time. This is especially useful when setting up your elasticsearch objects in a migration:

from elasticsearch_dsl import Index, DocType, Text, analyzer

blogs = Index('blogs')

# define custom settings
blogs.settings(
    number_of_shards=1,
    number_of_replicas=0
)

# define aliases
blogs.aliases(
    old_blogs={}
)

# register a doc_type with the index
blogs.doc_type(Post)

# can also be used as class decorator when defining the DocType
@blogs.doc_type
class Post(DocType):
    title = Text()

# You can attach custom analyzers to the index

html_strip = analyzer('html_strip',
    tokenizer="standard",
    filter=["standard", "lowercase", "stop", "snowball"],
    char_filter=["html_strip"]
)

blogs.analyzer(html_strip)

# delete the index, ignore if it doesn't exist
blogs.delete(ignore=404)

# create the index in elasticsearch
blogs.create()

You can also set up a template for your indices and use the clone method to create specific copies:

blogs = Index('blogs', using='production')
blogs.settings(number_of_shards=2)
blogs.doc_type(Post)

# create a copy of the index with different name
company_blogs = blogs.clone('company-blogs')

# create a different copy on different cluster
dev_blogs = blogs.clone('blogs', using='dev')
# and change its settings
dev_blogs.setting(number_of_shards=1)