Persistence¶
You can use the dsl library to define your mappings and a basic persistent layer for your application.
Document¶
If you want to create a model-like wrapper around your documents, use the
Document
class. It can also be used to create all the necessary mappings and
settings in elasticsearch (see Document life cycle for details).
from datetime import datetime
from elasticsearch_dsl import Document, Date, Nested, Boolean, \
analyzer, InnerDoc, Completion, Keyword, Text
html_strip = analyzer('html_strip',
tokenizer="standard",
filter=["standard", "lowercase", "stop", "snowball"],
char_filter=["html_strip"]
)
class Comment(InnerDoc):
author = Text(fields={'raw': Keyword()})
content = Text(analyzer='snowball')
created_at = Date()
def age(self):
return datetime.now() - self.created_at
class Post(Document):
title = Text()
title_suggest = Completion()
created_at = Date()
published = Boolean()
category = Text(
analyzer=html_strip,
fields={'raw': Keyword()}
)
comments = Nested(Comment)
class Index:
name = 'blog'
def add_comment(self, author, content):
self.comments.append(
Comment(author=author, content=content, created_at=datetime.now()))
def save(self, ** kwargs):
self.created_at = datetime.now()
return super().save(** kwargs)
Note on dates¶
elasticsearch-dsl
will always respect the timezone information (or lack
thereof) on the datetime
objects passed in or stored in Elasticsearch.
Elasticsearch itself interprets all datetimes with no timezone information as
UTC
. If you wish to reflect this in your python code, you can specify
default_timezone
when instantiating a Date
field:
class Post(Document):
created_at = Date(default_timezone='UTC')
In that case any datetime
object passed in (or parsed from elasticsearch)
will be treated as if it were in UTC
timezone.
Document life cycle¶
Before you first use the Post
document type, you need to create the
mappings in Elasticsearch. For that you can either use the Index object
or create the mappings directly by calling the init
class method:
# create the mappings in Elasticsearch
Post.init()
To create a new Post
document just instantiate the class and pass in any
fields you wish to set, you can then use standard attribute setting to
change/add more fields. Note that you are not limited to the fields defined
explicitly:
# instantiate the document
first = Post(title='My First Blog Post, yay!', published=True)
# assign some field values, can be values or lists of values
first.category = ['everything', 'nothing']
# every document has an id in meta
first.meta.id = 47
# save the document into the cluster
first.save()
All the metadata fields (id
, routing
, index
etc) can be
accessed (and set) via a meta
attribute or directly using the underscored
variant:
post = Post(meta={'id': 42})
# prints 42
print(post.meta.id)
# override default index
post.meta.index = 'my-blog'
Note
Having all metadata accessible through meta
means that this name is
reserved and you shouldn’t have a field called meta
on your document.
If you, however, need it you can still access the data using the get item
(as opposed to attribute) syntax: post['meta']
.
To retrieve an existing document use the get
class method:
# retrieve the document
first = Post.get(id=42)
# now we can call methods, change fields, ...
first.add_comment('me', 'This is nice!')
# and save the changes into the cluster again
first.save()
# you can also update just individual fields which will call the update API
# and also update the document in place
first.update(published=True, published_by='me')
If the document is not found in elasticsearch an exception
(elasticsearch.NotFoundError
) will be raised. If you wish to return
None
instead just pass in ignore=404
to suppress the exception:
p = Post.get(id='not-in-es', ignore=404)
p is None
When you wish to retrive multiple documents at the same time by their id
you can use the mget
method:
posts = Post.mget([42, 47, 256])
mget
will, by default, raise a NotFoundError
if any of the documents
wasn’t found and RequestError
if any of the document had resulted in error.
You can control this behavior by setting parameters:
raise_on_error
- If
True
(default) then any error will cause an exception to be raised. Otherwise all documents containing errors will be treated as missing. missing
- Can have three possible values:
'none'
(default),'raise'
and'skip'
. If a document is missing or errored it will either be replaced withNone
, an exception will be raised or the document will be skipped in the output list entirely.
The index associated with the Document
is accessible via the _index
class property which gives you access to the Index class.
The _index
attribute is also home to the load_mappings
method which will
update the mapping on the Index
from elasticsearch. This is very useful
if you use dynamic mappings and want the class to be aware of those fields (for
example if you wish the Date
fields to be properly (de)serialized):
Post._index.load_mappings()
To delete a document just call its delete
method:
first = Post.get(id=42)
first.delete()
Analysis¶
To specify analyzer
values for Text
fields you can just use the name
of the analyzer (as a string) and either rely on the analyzer being defined
(like built-in analyzers) or define the analyzer yourself manually.
Alternatively you can create your own analyzer and have the persistence layer handle its creation, from our example earlier:
from elasticsearch_dsl import analyzer, tokenizer
my_analyzer = analyzer('my_analyzer',
tokenizer=tokenizer('trigram', 'nGram', min_gram=3, max_gram=3),
filter=['lowercase']
)
Each analysis object needs to have a name (my_analyzer
and trigram
in
our example) and tokenizers, token filters and char filters also need to
specify type (nGram
in our example).
Note
When creating a mapping which relies on a custom analyzer the index must
either not exist or be closed. To create multiple Document
-defined
mappings you can use the Index object.
Search¶
To search for this document type, use the search
class method:
# by calling .search we get back a standard Search object
s = Post.search()
# the search is already limited to the index and doc_type of our document
s = s.filter('term', published=True).query('match', title='first')
results = s.execute()
# when you execute the search the results are wrapped in your document class (Post)
for post in results:
print(post.meta.score, post.title)
Alternatively you can just take a Search
object and restrict it to return
our document type, wrapped in correct class:
s = Search()
s = s.doc_type(Post)
You can also combine document classes with standard doc types (just strings),
which will be treated as before. You can also pass in multiple Document
subclasses and each document in the response will be wrapped in it’s class.
If you want to run suggestions, just use the suggest
method on the
Search
object:
s = Post.search()
s = s.suggest('title_suggestions', 'pyth', completion={'field': 'title_suggest'})
# you can even execute just the suggestions via the _suggest API
suggestions = s.execute_suggest()
for result in suggestions.title_suggestions:
print('Suggestions for %s:' % result.text)
for option in result.options:
print(' %s (%r)' % (option.text, option.payload))
class Meta
options¶
In the Meta
class inside your document definition you can define various
metadata for your document:
mapping
- optional instance of
Mapping
class to use as base for the mappings created from the fields on the document class itself.
Any attributes on the Meta
class that are instance of MetaField
will be
used to control the mapping of the meta fields (_all
, dynamic
etc).
Just name the parameter (without the leading underscore) as the field you wish
to map and pass any parameters to the MetaField
class:
class Post(Document):
title = Text()
class Meta:
all = MetaField(enabled=False)
dynamic = MetaField('strict')
class Index
options¶
This section of the Document
definition can contain any information about
the index, its name, settings and other attributes:
name
- name of the index to use, if it contains a wildcard (
*
) then it cannot be used for any write operations and anindex
kwarg will have to be passed explicitly when calling methods like.save()
. doc_type
- name of the
_type
in elasticsearch. Note that you have to define this as well asdoc_type
inclass Meta
in order for it to take effect. using
- default connection alias to use, defaults to
'default'
settings
- dictionary containing any settings for the
Index
object likenumber_of_shards
. analyzers
- additional list of analyzers that should be defined on an index (see Analysis for details).
aliases
- dictionary with any aliases definitions
Index¶
In typical scenario using class Index
on a Document
class is sufficient
to perform any action. In a few cases though it can be useful to manipulate an
Index
object directly.
Index
is a class responsible for holding all the metadata related to an
index in elasticsearch - mappings and settings. It is most useful when defining
your mappings since it allows for easy creation of multiple mappings at the
same time. This is especially useful when setting up your elasticsearch objects
in a migration:
from elasticsearch_dsl import Index, Document, Text, analyzer
blogs = Index('blogs')
# define custom settings
blogs.settings(
number_of_shards=1,
number_of_replicas=0
)
# define aliases
blogs.aliases(
old_blogs={}
)
# register a document with the index
blogs.document(Post)
# can also be used as class decorator when defining the Document
@blogs.document
class Post(Document):
title = Text()
# You can attach custom analyzers to the index
html_strip = analyzer('html_strip',
tokenizer="standard",
filter=["standard", "lowercase", "stop", "snowball"],
char_filter=["html_strip"]
)
blogs.analyzer(html_strip)
# delete the index, ignore if it doesn't exist
blogs.delete(ignore=404)
# create the index in elasticsearch
blogs.create()
You can also set up a template for your indices and use the clone
method to
create specific copies:
blogs = Index('blogs', using='production')
blogs.settings(number_of_shards=2)
blogs.document(Post)
# create a copy of the index with different name
company_blogs = blogs.clone('company-blogs')
# create a different copy on different cluster
dev_blogs = blogs.clone('blogs', using='dev')
# and change its settings
dev_blogs.setting(number_of_shards=1)
IndexTemplate¶
elasticsearch-dsl
also exposes an option to manage index templates
in elasticsearch using the IndexTemplate
class which has very similar API to Index
.
Once an index template is saved in elasticsearch it’s contents will be
automatically applied to new indices (existing indices are completely
unaffected by templates) that match the template pattern (any index starting
with blogs-
in our example), even if the index is created automatically
upon indexing a document into that index.
Potential workflow for a set of time based indices governed by a single template:
from datetime import datetime
from elasticsearch_dsl import Document, Date, Text IndexTemplate
class Log(Document):
content = Text()
timestamp = Date()
class Index:
name = "logs-*"
settings = {
"number_of_shards": 2
}
def save(self, **kwargs):
# assign now if no timestamp given
if not self.timestamp:
self.timestamp = datetime.now()
# override the index to go to the proper timeslot
kwargs['index'] = self.timestamp.strftime('logs-%Y%m%d')
return super().save(**kwargs)
# once, as part of application setup, during deploy/migrations:
logs = Log._index.as_template()
logs.save()
# to perform search across all logs:
search = Log.search()